scikit-learn K-Means Clustering을 사용하여 자신의 거리 기능을 지정할 수 있습니까?
scikit-learn K-Means Clustering을 사용하여 자신의 거리 기능을 지정할 수 있습니까?
다음은 scipy.spatial.distance 또는 사용자 함수 에서 20-odd 거리를 사용하는 작은 kmeans입니다 .
의견은 환영받을 것입니다 (지금까지는 한 명의 사용자 만 있었지만 충분하지 않았습니다). 특히, N, dim, k, 미터법은 무엇입니까?
#!/usr/bin/env python
# kmeans.py using any of the 20-odd metrics in scipy.spatial.distance
# kmeanssample 2 pass, first sample sqrt(N)
from __future__ import division
import random
import numpy as np
from scipy.spatial.distance import cdist # $scipy/spatial/distance.py
# http://docs.scipy.org/doc/scipy/reference/spatial.html
from scipy.sparse import issparse # $scipy/sparse/csr.py
__date__ = "2011-11-17 Nov denis"
# X sparse, any cdist metric: real app ?
# centres get dense rapidly, metrics in high dim hit distance whiteout
# vs unsupervised / semi-supervised svm
#...............................................................................
def kmeans( X, centres, delta=.001, maxiter=10, metric="euclidean", p=2, verbose=1 ):
""" centres, Xtocentre, distances = kmeans( X, initial centres ... )
in:
X N x dim may be sparse
centres k x dim: initial centres, e.g. random.sample( X, k )
delta: relative error, iterate until the average distance to centres
is within delta of the previous average distance
maxiter
metric: any of the 20-odd in scipy.spatial.distance
"chebyshev" = max, "cityblock" = L1, "minkowski" with p=
or a function( Xvec, centrevec ), e.g. Lqmetric below
p: for minkowski metric -- local mod cdist for 0 < p < 1 too
verbose: 0 silent, 2 prints running distances
out:
centres, k x dim
Xtocentre: each X -> its nearest centre, ints N -> k
distances, N
see also: kmeanssample below, class Kmeans below.
"""
if not issparse(X):
X = np.asanyarray(X) # ?
centres = centres.todense() if issparse(centres) \
else centres.copy()
N, dim = X.shape
k, cdim = centres.shape
if dim != cdim:
raise ValueError( "kmeans: X %s and centres %s must have the same number of columns" % (
X.shape, centres.shape ))
if verbose:
print "kmeans: X %s centres %s delta=%.2g maxiter=%d metric=%s" % (
X.shape, centres.shape, delta, maxiter, metric)
allx = np.arange(N)
prevdist = 0
for jiter in range( 1, maxiter+1 ):
D = cdist_sparse( X, centres, metric=metric, p=p ) # |X| x |centres|
xtoc = D.argmin(axis=1) # X -> nearest centre
distances = D[allx,xtoc]
avdist = distances.mean() # median ?
if verbose >= 2:
print "kmeans: av |X - nearest centre| = %.4g" % avdist
if (1 - delta) * prevdist <= avdist <= prevdist \
or jiter == maxiter:
break
prevdist = avdist
for jc in range(k): # (1 pass in C)
c = np.where( xtoc == jc )[0]
if len(c) > 0:
centres[jc] = X[c].mean( axis=0 )
if verbose:
print "kmeans: %d iterations cluster sizes:" % jiter, np.bincount(xtoc)
if verbose >= 2:
r50 = np.zeros(k)
r90 = np.zeros(k)
for j in range(k):
dist = distances[ xtoc == j ]
if len(dist) > 0:
r50[j], r90[j] = np.percentile( dist, (50, 90) )
print "kmeans: cluster 50 % radius", r50.astype(int)
print "kmeans: cluster 90 % radius", r90.astype(int)
# scale L1 / dim, L2 / sqrt(dim) ?
return centres, xtoc, distances
#...............................................................................
def kmeanssample( X, k, nsample=0, **kwargs ):
""" 2-pass kmeans, fast for large N:
1) kmeans a random sample of nsample ~ sqrt(N) from X
2) full kmeans, starting from those centres
"""
# merge w kmeans ? mttiw
# v large N: sample N^1/2, N^1/2 of that
# seed like sklearn ?
N, dim = X.shape
if nsample == 0:
nsample = max( 2*np.sqrt(N), 10*k )
Xsample = randomsample( X, int(nsample) )
pass1centres = randomsample( X, int(k) )
samplecentres = kmeans( Xsample, pass1centres, **kwargs )[0]
return kmeans( X, samplecentres, **kwargs )
def cdist_sparse( X, Y, **kwargs ):
""" -> |X| x |Y| cdist array, any cdist metric
X or Y may be sparse -- best csr
"""
# todense row at a time, v slow if both v sparse
sxy = 2*issparse(X) + issparse(Y)
if sxy == 0:
return cdist( X, Y, **kwargs )
d = np.empty( (X.shape[0], Y.shape[0]), np.float64 )
if sxy == 2:
for j, x in enumerate(X):
d[j] = cdist( x.todense(), Y, **kwargs ) [0]
elif sxy == 1:
for k, y in enumerate(Y):
d[:,k] = cdist( X, y.todense(), **kwargs ) [0]
else:
for j, x in enumerate(X):
for k, y in enumerate(Y):
d[j,k] = cdist( x.todense(), y.todense(), **kwargs ) [0]
return d
def randomsample( X, n ):
""" random.sample of the rows of X
X may be sparse -- best csr
"""
sampleix = random.sample( xrange( X.shape[0] ), int(n) )
return X[sampleix]
def nearestcentres( X, centres, metric="euclidean", p=2 ):
""" each X -> nearest centre, any metric
euclidean2 (~ withinss) is more sensitive to outliers,
cityblock (manhattan, L1) less sensitive
"""
D = cdist( X, centres, metric=metric, p=p ) # |X| x |centres|
return D.argmin(axis=1)
def Lqmetric( x, y=None, q=.5 ):
# yes a metric, may increase weight of near matches; see ...
return (np.abs(x - y) ** q) .mean() if y is not None \
else (np.abs(x) ** q) .mean()
#...............................................................................
class Kmeans:
""" km = Kmeans( X, k= or centres=, ... )
in: either initial centres= for kmeans
or k= [nsample=] for kmeanssample
out: km.centres, km.Xtocentre, km.distances
iterator:
for jcentre, J in km:
clustercentre = centres[jcentre]
J indexes e.g. X[J], classes[J]
"""
def __init__( self, X, k=0, centres=None, nsample=0, **kwargs ):
self.X = X
if centres is None:
self.centres, self.Xtocentre, self.distances = kmeanssample(
X, k=k, nsample=nsample, **kwargs )
else:
self.centres, self.Xtocentre, self.distances = kmeans(
X, centres, **kwargs )
def __iter__(self):
for jc in range(len(self.centres)):
yield jc, (self.Xtocentre == jc)
#...............................................................................
if __name__ == "__main__":
import random
import sys
from time import time
N = 10000
dim = 10
ncluster = 10
kmsample = 100 # 0: random centres, > 0: kmeanssample
kmdelta = .001
kmiter = 10
metric = "cityblock" # "chebyshev" = max, "cityblock" L1, Lqmetric
seed = 1
exec( "\n".join( sys.argv[1:] )) # run this.py N= ...
np.set_printoptions( 1, threshold=200, edgeitems=5, suppress=True )
np.random.seed(seed)
random.seed(seed)
print "N %d dim %d ncluster %d kmsample %d metric %s" % (
N, dim, ncluster, kmsample, metric)
X = np.random.exponential( size=(N,dim) )
# cf scikits-learn datasets/
t0 = time()
if kmsample > 0:
centres, xtoc, dist = kmeanssample( X, ncluster, nsample=kmsample,
delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
else:
randomcentres = randomsample( X, ncluster )
centres, xtoc, dist = kmeans( X, randomcentres,
delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
print "%.0f msec" % ((time() - t0) * 1000)
# also ~/py/np/kmeans/test-kmeans.py
일부 노트 26mar 2012 추가 :
1) 코사인 거리의 경우 먼저 모든 데이터 벡터를 | X | = 1; 그때
cosinedistance( X, Y ) = 1 - X . Y = Euclidean distance |X - Y|^2 / 2
빠릅니다. 비트 벡터의 경우, 플로트로 확장하는 대신 표준을 벡터와 별도로 유지하십시오 (일부 프로그램은 사용자를 위해 확장 될 수 있음). 희소 벡터의 경우 N, X의 1 %를 말합니다. Y는 시간 O (2 % N), 공간 O (N)을 가져야합니다. 그러나 나는 어떤 프로그램을하는지 모른다.
2) Scikit-learn clustering gives an excellent overview of k-means, mini-batch-k-means ... with code that works on scipy.sparse matrices.
3) Always check cluster sizes after k-means. If you're expecting roughly equal-sized clusters, but they come out [44 37 9 5 5] %
... (sound of head-scratching).
Unfortunately no: scikit-learn current implementation of k-means only uses Euclidean distances.
It is not trivial to extend k-means to other distances and denis' answer above is not the correct way to implement k-means for other metrics.
Just use nltk instead where you can do this, e.g.
from nltk.cluster.kmeans import KMeansClusterer
NUM_CLUSTERS = <choose a value>
data = <sparse matrix that you would normally give to scikit>.toarray()
kclusterer = KMeansClusterer(NUM_CLUSTERS, distance=nltk.cluster.util.cosine_distance, repeats=25)
assigned_clusters = kclusterer.cluster(data, assign_clusters=True)
Yes you can use a difference metric function; however, by definition, the k-means clustering algorithm relies on the eucldiean distance from the mean of each cluster.
You could use a different metric, so even though you are still calculating the mean you could use something like the mahalnobis distance.
k-means of Spectral Python allows the use of L1 (Manhattan) distance.
There is pyclustering which is python/C++ (so its fast!) and lets you specify a custom metric function
from pyclustering.cluster.kmeans import kmeans
from pyclustering.utils.metric import type_metric, distance_metric
user_function = lambda point1, point2: point1[0] + point2[0] + 2
metric = distance_metric(type_metric.USER_DEFINED, func=user_function)
# create K-Means algorithm with specific distance metric
start_centers = [[4.7, 5.9], [5.7, 6.5]];
kmeans_instance = kmeans(sample, start_centers, metric=metric)
# run cluster analysis and obtain results
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
Actually, i haven't tested this code but cobbled it together from a ticket and example code.
Sklearn Kmeans uses the Euclidean distance. It has no metric parameter. This said, if you're clustering time series, you can use the tslearn
python package, when you can specify a metric (dtw
, softdtw
, euclidean
).
'IT박스' 카테고리의 다른 글
가장 빠른 하위 문자열 검색 알고리즘은 무엇입니까? (0) | 2020.06.04 |
---|---|
왜 못해 (0) | 2020.06.04 |
PostgreSQL에서 시간대가 있거나없는 타임 스탬프의 차이점 (0) | 2020.06.04 |
SQL 데이터베이스 대신 Redis와 같은 키 / 값 저장소를 사용하는 경우는 언제입니까? (0) | 2020.06.04 |
RStudio for Python과 같은 것이 있습니까? (0) | 2020.06.04 |